
Brian Cantwell Smith*

Four dialectics underwrite all of computing:

1. Between meaning and mechanism;
2. Between the abstract and the concrete;
3. Between the static and the dynamic; and
4. Between what is singular (one) and what is plural (many).

Any adequate account of computing will, among other things, have to do
justice to all four. In fact the quartet can be used as something of a normative
standard, in terms of which to evaluate any proposed theory.

I want to describe these dialectics in some detail—what they come to,
how they relate, etc. But I will get to that only in Part II. First I want to re-
port on a project I’ve been involved in where these four have arisen as central
concerns. The results of that study alter the ways these dialectics should be
approached.

Part I — Theory of Computing

1. Three criteria

For more than 30 years I have been searching for a ”comprehensive theory of
computing.” Since the outset, I have taken that to be one that meets three
criteria:

1. Empirical: It must do justice to computational practice (e.g., be ca-
pable of explaining Microsoft Word: the program, its construction,
interpretation, maintenance, and grounds for use);

                                                
*Cognitive Science, Computer Science, Philosophy, and Version of May 10, 1999
History and Philosophy of Science Comments welcome
Indiana University, Bloomington, in 47405 use smithbc@indiana.edu
Copyright © 1999 Brian Cantwell Smith http://www.ageofsig.org/people/bcsmith
Note: This paper is extracted from, and consists in part of excerpts from, Volume I (Intro-
duce) of The Age of Significance: An Essay on the Foundations of Computation and Intentional-
ity, forthcoming from the MIT Press.

Four Dialectics of Computing



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 2 –

2. Conceptual: It must discharge all intellectual debts (e.g., to seman-
tics), so that we can understand what it says, where it comes from,
what it “costs”; and

3. Cognitive: It must provide a tenable foundation for the computa-
tional theory of mind—the thesis, sometimes known as “cognitiv-
ism,” that underlies artificial intelligence and cognitive science.

All three criteria are intended to be sensible. The first, empirical, one, of do-
ing justice to practice, helps to keep the analysis grounded in real-world ex-
amples. It is humbling, too, since computer technology so rapidly expands,
dodges expectations, and in general outstrips our theoretical grasp. But the
criterion’s primary advantage is to give us a vantage point from which to
question all theoretical perspectives—including (perhaps especially) the
widely-held Turing-machine or recursion-theoretic conception of comput-
ability that currently claims the title “the theory of computation.” For I take
it as a tenet that what Silicon Valley treats as computational is computational;
to deny that will be considered sufficient grounds for rejection. But I am not
prepared to accord such a priori commitment to any story about computa-
tion—including the theory we currently teach in graduate school. I also reject
all proposals that assume that computation can be defined . By my
lights—and in spite of the peculiar fact that we construct the evi-
dence—computer science is primarily an empirical discipline. To make the
grade, a theory must make substantive, empirical claims on what I call com-

putation in the wild:1 that eruptive body of practices, techniques, networks,
machines, and behavior that has so palpably revolutionized late twentieth
century life.

The second, “conceptual” criterion, that a theory own up to—and as far
as possible discharge—its intellectual debts, is in a way no more than stan-
dard theoretical hygiene. But it is important to highlight, in the computa-
tional case, for two intertwined reasons. First, it turns out that several candi-
date theories of computing, including the official “theory of computation”
already mentioned, as well as many reigning but largely tacit ideas about
computing held in surrounding disciplines,2 implicitly rely, without explana-

                                                
1Borrowed from Hutchins’ Cognition in the Wild (1995).
2A notable example of such a far-from-innocent assumption is the common idea that “com-
putation” is the fundamental notion, with a “computer” simply being any physical device



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 3 –

tion, on such substantial notions as representation, semantics, and interpreta-
tion.3 Second, in spite of this reliance, there is a tendency throughout sur-
rounding intellectual terrain to point to computation as a possible theory of
those very recalcitrant notions (for example, to invoke notions of computability
in analyses of language, meaning, and learning). Unless we ferret out all such
dependencies, and lay
them in plain view, we
run the risk of endorsing
accounts that are either
based on, or give rise to,
vicious circularity.

The third “cognitive”
condition, that an ade-
quate theory of computa-
tion must provide a ten-
able foundation for a
theory of mind, is of a
somewhat different char-
acter. Like the second, it
is more a metatheoretic
requirement on the form
or status of the theory than a constraint on substantive content. In endorsing
the criterion, however, I make no commitment to cognitivism’s being true or
false. I just want to know what it says.

That is not to say that cognitivism’s content is left entirely open. Its fun-
damental thesis—that the mind is computational—is given substance by the
first, empirical criterion. The situation is depicted in figure 1. As I read it,
that is, cognitivism is not a theory-laden proposal, in the sense of framing
specific hypotheses about what computers are. Rather, it has more an osten-
sive character: that people (i.e., us) are computers in whatever way computers

                                                                                                                        
that carries out a computation. It turns out, on inspection, that this assumption builds in a
residually dualist stance towards the mind/body problem—something I eventually want to
argue against, and probably not a claim that anyone should want to build into their theories
as a presumptive but inexplicit premise.
3The official theory of computation is riddled with undischarged representational and mod-
elling assumptions.

theory of computing3

theory of computing2

theory of mind theory of computing1

?

≈

≈

traditional
theory-laden
claim (✘)

ostensive claim (✔)

Figure 1 — The Computational Theory of Mind



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 4 –

(i.e., those things over there) are computers—or at least in whatever way some
of those things are computers. To know what cognitivism comes to, there-
fore, we need to know what computers are.4

An example will make this clear. Many in the philosophy of mind (such
as Fodor) take the computational theory of mind (ccom)  to be a claim that
cognition is formal symbol manipulation. On my view, to say that is to make
two claims at once, that must be independently assessed: (i) that the mind is
computational, and (ii) that to be computa-
tional is to be formal symbol manipulation.
I am not sure about the former; but (as I
will explain in a moment) I believe the latter
is false.

Even once we separate an (ostensive)
computational theory of mind from sub-
stantive empirical theories of what it is to be
computational, we have not gone far
enough. For few think that cognition and
computation are the same thing (i.e., that
every computer is a cognitive agent, that the
terms ‘cognition’ and ‘computation’ should be taken as a posteriori synony-
mous). Rather, the idea, I take it, is that only some computers are cognitive:
that cognition is something like a proper computational species. One can
understand this by seeing that the claim involves computation at two levels
(as depicted in figure 2). Within the presumptively (wider) class of “things
                                                
4It follows that any theoretical formulation of cognitivism is doubly contingent. Thus con-
sider Newell and Simon’s (1976) popular “physical symbol system hypothesis,” according to
which human intelligence is claimed to consist of physical symbol manipulation, or Fodor’s
(1975, 1980) claim that thinking consists of formal symbol manipulation, or Dreyfus’ (1993)
assertion that cognitivism (as opposed to connectionism) requires the explicit manipulation
of explicit symbols. Not only do these writers make a hypothetical statement about people,
that they are physical, formal, or explicit symbol manipulators, respectively; they do so by
making a hypothetical statement about computers, that they are in some essential or illumi-
nating way characterisable in the same way. Because I take the latter claim to be as subservi-
ent to empirical adequacy as the former (by the first criterion), there are two ways in which
these writers could be wrong. In claiming that people are formal symbol manipulators, for
example, Fodor would be wrong if computers were formal symbol manipulators and people
were not. But he would also be wrong, even though cognitivism itself might still be true , if
computers were not formal symbol manipulators, either.

C (Computational)

Cognitive

Subset defined by
restriction predicate R

Figure 2  — Cognition as subset



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 5 –

computational” (C), the cognitive is not only claimed to be a subset, but the
restrictive predicate (or characteristic function) R identifying that subset is
also assumed to be formulable in computational terms. For example, suppose
(falsely!) that what it is to be cognitive is to be a finite-state automaton with
bounded input tape and look-ahead buffer of 3. To say this is to add to a
background claim that cognitive systems are computers a more specific claim
that the restrictive predicate identifying the cognitive subset is computation-
ally-formulable (namely: finite-state automata with bounded tape and look-
ahead buffer of 3).5

There is much more to be said about the relation between cognitivism
and computing, but we need not go into it here. The basic point is merely to
show that understanding the computational theory of mind depends on
having an adequate account of computing. And so, to bring this back to the
project being described, while my ultimate interest has always had primarily
to do with people and cognitive science, my efforts for these 30-odd years
have focused almost exclusively on the prior question: of what computing
is—of what it is to be computational.6

2. Six construals

Some might argue that we already know what computation is. That breaks
into two questions: (i) is there a story—an account that people think answers
the question of what computers are; and (ii) is that story right?

With regards to the first question, the answer is not no, but it is not a
simple yes, either. More than one idea is at play in current theoretic discourse.
I have found it convenient to distinguish six main construals of computation,
each requiring its own analysis:

1. Formal symbol manipulation (FSM): the idea, derivative from a
century’s work in formal logic and metamathematics, of a machine

                                                
5Obviously one can identify  subsets of C in the diagram that are not identified in computa-
tional terms: to be a computer that costs less than $1000, for example, or to be a computer
that weighs exactly 7.3 lbs, are presumably non-computationally restricted subsets of the
computational.
6Some will want to distinguish computer, computational, etc., in this phrasing. I agree, but
making appropriate distinctions between such notions is exactly one of the tasks that a the-
ory of computation should give us. It would be a serious mistake to assume, going in, that we
know in advance how such terms relate.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 6 –

manipulating symbolic or (at least potentially) meaningful expres-
sions without regard to their interpretation or semantic content;

2. Effective computability (EC): what can be done, and how hard it is
to do, mechanically, by an abstract analogue of a “mere machine”;

3. Rule-following, or execution of an algorithm (RF): what is in-
volved, and what behavior is thereby produced, in following a set of
rules or instructions, such as when making dessert;

4. Digital state machines (DSM): the idea of an automata with a fi-
nite disjoint set of internally homogeneous machine states—as
parodied in the “clunk, clunk, clunk” gait of a 1950’s cartoon robot;

5. Information processing (IP): what is involved in storing, manipu-
lating, displaying, and otherwise trafficking in information, what-
ever that might be; and

6. Physical symbol systems (PSS): the idea, made famous by Newell
and Simon, that, somehow or other, computers interact with (and
perhaps also are made of) symbols in a way that depends on their
mutual physical embodiment.

No claim is made that this list is exhaustive. In recent years a variety of new
construals have started to attract allegiance, including for example:

7. Interactive agents (IA): active agents in an embedding environ-
ment, that interact with, and communicate with, other agents (and
perhaps also with people);

8. Dynamics (DYN): the notion of a dynamical system, linear or non-
linear, as popularized in discussions of attractors, turbulence, criti-
cality, emergence, etc.;

9. Complex adaptive systems (CAS): a notion (primarily associated
with the Santa Fe Institute) of self-organising systems that respond
to their environment by adjusting their structure so as to survive
and prosper.

There are also those who believe that computation’s distinctive character is
methodological rather than substantive or ontological (thus Agre characterises
computer science as an emerging social practice of constructing complex
physical implementations of things). In spite of the potential importance of



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 7 –

all these alternative suggestions, however, it is the first six, at least to date,
that have shouldered the lion’s share of responsibility for framing the intellec-
tual debate about the constitutive character of computing.

By far the most important step in getting to the heart of the foundational
question, I believe, is to recognize that these construals are all conceptually
distinct. In part because of their great familiarity (we have long since lost our
innocence), and in part because “real” computers seem to exemplify more
than one of them—including those often-imagined but seldom-seen Turing
machines, complete with controllers, read-write heads, and long tapes—it is
sometimes uncritically thought that all six can be viewed as rough synonyms,
as if they were different ways of getting at the same thing. This conflationary
tendency is especially rampant in the cognitivist literature, much of which
moves around among the lot as if doing so were intellectually free. But that is
a mistake. The supposition that any two of these construals amount to the
same thing, let alone all six, is false.

Thus the formal symbol manipulation construal (fsm), contrary to  wide-
spread assumption, is explicitly characterized in terms of computing’s seman-
tic or intentional aspect, if for no other reason than that without some such
intentional character there would be no warrant in calling it symbol manipula-
tion (the not-very-interesting thesis that computation is the manipulation of
entities without regard to any issues of interpretation I call stuff manipula-

tion).  The digital state machine construal (dsm), in contrast, makes no such
reference to intentional properties. If a Lincoln-log contraption were digital
but not symbolic, and a system manipulating continuous symbols were for-
mal but not discrete, they would be differentially classified by the two con-
struals. Not only do fsm and dsm mean different things, in other words; they
have distinct (if overlapping) extensions.

The second and third construal—effective computability (ec) and rule
following or algorithm execution (rf)—similarly differ on the crucial issue of
semantics. Whereas the effective computability construal, especially in its fa-
miliar mathematical guise, seems free of intentional connotation, the idea of
rule following (as opposed to more ubiquitous rule honouring) seems not only
to involve rules or recipes, which presumably do mean something, but also to
require some sort of understanding and perhaps commitment on the part of



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 8 –

the agent producing the behavior.7

Semantics is not the only open issue. It is similarly unclear (as will be-
come apparent below) whether the notions of “machine” and “taking an ef-
fective step” internal to the ec construal make fundamental reference to
causal powers, material realization, or other physical properties, or whether,
as most current theoretical discussions suggest, effective computability should
be taken as an abstract mathematical notion. The construals also differ on
whether they focus on internal structure or external input / output—i.e., on
whether (i) they treat computation as fundamentally a way of being structured
or constituted, so that surface behavior is derivative (the formal symbol ma-
nipulation and digital state machine construals are of this type); or whether
(ii) the having of a particular surface behavior is the essential locus of being
computational, with questions about how that is achieved left unspecified
and uncared about (effective computability is like this, with rule-following
something of an intermediate case).

Not only must the six construals be differentiated one from another,
moreover; additional distinctions must be made within each one. Thus the
idea of information processing (ip)—by far the most likely characterization of
computation to appear in the Wall Street Journal, and the idea responsible for
such popular slogans as ‘the Information Age’ and ‘the information high-
way’—needs to be broken down, in turn, into at least four sub-readings, de-
pending on how ‘information’ is understood:

1. What I will call a lay notion, perhaps dating from the nineteenth-
century, of something like an abstract, publicly-accessible com-
modity, carrying a certain degree of impersonal authority;

2. A more current popular notion, having to do with the current pre-
occupation with information technology and the internet;

3. The quantitative (and largely semantics-free) notion underlying
so-called “information theory,” that originated with Shannon &
Weaver (1949), spread out through much of cybernetics and com-
munication theory, is implicated in Kolmogorov, Chaitin, and
similar complexity measures, and has more recently been tied to no-
tions of energy and, particularly, entropy; and

                                                
7Ref Haugeland.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 9 –

4. The semantical notion of information advocated by Dretske (1981),
Barwise & Perry (1983), Halpern (1987), and others, that in contrast
to the third deals explicitly with semantic content and veridicality.

By the same token, the formal symbol manipulation (fsm) thesis breaks into
positive and negative readings, one having to do with what formality includes
(something like syntax or form); the other, with what it excludes (semantics).
And so on and so forth.

Clarifying these issues, bringing the salient assumptions to the fore,
showing where they agree and where they differ, tracing the roles they have
played in the last fifty years—questions like this must be part of any founda-
tional reconstruction. They have certainly underwritten my own work, where
I attempt a thorough analysis of each of these six construals.8

Yet in a sense these issues are all secondary. For none have the bite of the
second question raised at the beginning of this section: of whether any of
these enumerated accounts is right. Naturally, one has to say just what this
means—has to answer the question, that is, “Right of what?,” in order to
avoid the superficial response: “Of course such and such an analysis is right;
that’s how computation is defined!”  This is where the (first) empirical crite-
rion takes hold. “Right of practice,” is, by my lights, the proper reply. And it
is a reply with bite. For when subjected to the empirical demands of real
world computing and the conceptual demands of cognitive science, all six
construals fail—for deep, overlapping, but ultimately distinct, reasons. No
one of these six construals, on its own, nor any group, in combination, is
strong enough to meet the three criteria laid out above.

3. Prospects

That might seem like a negative conclusion. But it is a consequential one. For
the problem is not just that current theories are inadequate. Nor is it just that
I have failed, in my thirty-year search, to find a better one. What I have come
to believe—and am now prepared to argue—is that I had to fail. We will
never have a theory that meets the three stated criteria. We will never have a
theory of computing because there is nothing there to have a theory of.

Computers, in the end, turn out to be rather like cars: objects of inesti-
                                                
8The Age of Significance: An Essay on the Foundations of Computation and Intentionality, Vol-
umes I–VII, forthcoming from the MIT Press.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 10 –

mable social, political, and economic importance, but not destined, per se, to
be the subject of deep, intellectually satisfying theory. The problem is that
there is nothing sufficiently special about computers. In spite of the press,
computers in the wild prove, on inspection, not necessarily to be digital, not
necessarily to be abstract, not necessarily to be formal—i.e., not to exemplify
any characteristic property making them a distinct subspecies of the genus
“meaningful material system.” Computers are dynamic, meaningful, physical
artifacts—the best we know how to build. Period. There is no more to say.

As I say, this might seem a dismal conclusion—especially for someone
who has spent their professional life looking for a theory of computing. But
in fact the opposite is true:

That there is no theory of computing (and, hence, no computational the-
ory of mind) is the most optimistic conclusion that anyone involved in the
development of computation could possibly have hoped for.

Seeing it as an optimistic conclusion requires a radical change in perspective.
Instead of being a subject matter, warranting its own autonomous theory,
computing turns out to be a site: an historical occasion on which to see gen-
eral (unrestricted) issues
of meaning and mecha-
nism play out. And it is a
site of immense impor-
tance—signaling nothing
less, I believe, than the
end of 300 years of mate-
rialist natural science (a
study of matter, materi-
als, and mechanism), and
the emergence an era of
intellectual history of
equal importance—an
era I label “the age of
significance,” in which issues of meaning and mattering take an equal place
on the intellectual stage with issues matter and mechanism.

What computing has given us, in other words, is not a new way of being,
but a laboratory in which to explore and develop age-old issues—a laboratory

physics force

energy

meaning

syntax

semantics

truth

object

reduction

abstraction

supervenience
…

…

…

…

…

…

…

content
norms

Other
intellectual
disciplines

rule
behavior

action

mental causation
belief

psychology

conceptualisation
…

…

…

…

…embodiment

evolution
order

Computation

implementation

compiler

correctness

process interpreter

effective

data structure

architecture

semantics

syntax

…

…

…
…

…
…

…

…

…

semantics

object

computable virtual machine

Figure 3a — Computation as Distinct Subject Matter



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 11 –

of middling complexity, between the frictionless pucks and inclined planes of
mechanics, and the rich, full-blooded texture of the human condition, in
which to explore the unrestricted interplay of meaning and mechanism.

One way to understand this conclusion is depicted in figure 3. Figure 3a
indicates the traditional conception. Computing, depicted as an Erlenmeyer
flask, is viewed as a distinct subject matter—taking its place alongside chem-
istry, say, or history, or physics. It studies a variety of phenomena character-
ised as computational—and thereby thought to be distinct from the rest of
scientific or intellectual life. Figure 3b depicts what I believe to be the true
nature of the situation.
The idea of a theoreti-
cally-distinct computa-
tional realm has been set
aside (the confines of the
flask, as it were, peeled
back). Issues of classical
and current interest in
computer science—ab-
straction, implementa-
tion, materiality, model-
ling, virtual machines,
etc.—are allowed to join
their natural counterparts
(reduction, emergence,
supervenience, etc.) from the rest of intellectual inquiry.

When I have presented this picture to those involved in theoretical issues
in computing, I have been surprised by how readily they seem to agree to it.
Perhaps this should not be unexpected. There is, I believe, something relax-
ing about the reconfiguration. It not only fits the phenomena better than the
standard view, but makes more sense of fifty years of experience. But it is no
small change. Among other things, it (i) renders vacuous all statements of the
form “computers can (or cannot) do a,” for arbitrary a; (ii) evacuates the
computational theory of mind of intellectual substance; (iii) implies that the
theory of computability must either be discarded, or else recognised as being
a theory of something else; (iv) implies that no interesting theoretical state-
ment should contain the “c-word”; and (v) challenges the integrity of com-

…

…

…

…
…

…

…

…

…

…

…

…

…
…

…

…

reduction
abstraction

implementation
virtual machine

supervenience

effective

force
physics

computable

data structure

nonconceptual content
meaningsemantics

evolution
normsbehavior

process correctness

agency
behavior

interaction
conversation

communication
rpc’s

…

…

…

…
…

…

…

…

Figure 3b — Computation Unbundled



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 12 –

puter science departments.9 Nevertheless, I believe it is a change we must
embrace. Only when we understand computing as a site, not a subject mat-
ter, will we appreciate its true intellectual impact.

Part II — Dialectics

How do these conclusions affect the four dialectics with which we started?
It changes their tenor. I initially identified them as distinctive characteris-

tics of computing—as issues, cross-cutting the six (nine, whatever) construals,
that gave us a leg up on understanding what computing is. It is evident, how-
ever, that all four dialectics (meaning/mechanism, abstract/concrete, static/
dynamic, one/many) apply to all sorts of system that are not obviously com-
putational—including, among other things, people. This generality, in turn,
makes it natural to suppose that the ways in which the dialectical issues
would manifest in computers would (in some way) be particular to the compu-
tational case.

Thus consider the issue of meaning and mechanism. Many people10 be-
lieve that the computational version of meaning is somehow restricted; that
the relationship between intentionality and materiality in the case of comput-
ers is in some critical way different from the same relation in people, pre-
sumably because the kind of intentionality that computers exhibit is lesser, or
anyway more constrained, than full-blooded human intentionality. For ex-
ample, such people might think that computers are formal, in a way in which
people are not. Or that computers intrinsically lack originality and commit-
ment, in a way that is distinctive of human capacity for significance. It is ex-
actly this kind of assumption that I am concerned to block. To repeat: as far
as I have been able to tell, over these 30 years, there is nothing specific to
computation—nothing necessarily true of (all) computers in virtue of their being
computers—that necessitates their being distinctive as regards intentionality,
or indeed as being distinctive as regards any other issue. However meaning
and mechanism do or can relate, in people or in general, that form of relation
will some day or  other, I believe, be manifested in at least some computa-
tional cases.

                                                
9Few universities, after all, have departments of cars.
10Including some, I would wager, attending this workshop.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 13 –

What this suggests is that we approach the dialectics differently—or
rather, that we approach computing differently: as a laboratory in which to
study each dialectic as a full-fledged issue in its own right—without limita-
tion or compromise.

Under that rubric, a word about each.11

4. Meaning and Mechanism

That computation involves an interplay of meaning and mechanism is per-
haps the deepest fact about it. The issue is age-old: how a patch of “physical
stuff” can nevertheless represent, mean, wonder, commit, be oriented towards
the world.

The dialectic is not one of strict opposition. Pacé Descartes, few think
that meaning and mechanism come in two distinct kinds of stuff. Rather—
somehow or other, in ways theory must explain—intentional systems in gen-
eral (and computers in particular) are entities that, while on the one hand
“merely physical,” nevertheless, presumably in virtue of the ways in which
they are physical, are at the same time interpreters and dreamers—loci of sig-
nificance, subject to interpretation. Because of this simultaneous “more than
physical” but “no more than physical” character, the dialectic carries some-
thing of a tension between the immanent and the transcendent.

I take the meaning side of things—the semantic or intentional character
of computing—to be virtually self-evident. It is certainly endemic in the way
we talk: programming languages, data bases, knowledge representation, pro-
gramming language semantics, etc. All those terms (‘knowledge,’ ‘language,’
‘data,’ ‘information,’ ‘variable,’ ‘term,’ ‘identifier,’ etc.) are intentional—a
fact that would be a miraculous coincidence, if computing were not a fun-
damentally intentional phenomenon. Note too that the computational theory
of mind is entirely dependent on the fact that computers, like us, are inten-
tional beings (in most other ways brains and computers are extremely differ-
ent). Indeed, sans a semantic or interpretive side, it is hard to see what would
be distinctive about computing beyond being mere concrete physical stuff.12

I take it that the physical or mechanism side of computing is  equally ob-

                                                
11In this pre-conference proceedings I will address  only the first two. All four will be ad-
dressed in the final paper.
12Except perhaps digitality; see the fifth construal, above.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 14 –

vious. Computers aren’t just abstract theoretical posits, or pure ideals. Rather,
they have essentially to do with what works, what can happen, what can be
done. Agre, as already mentioned, has characterised computer science as es-
sentially no more than an inquiry into unrestricted physical implementation.

How intentional and material existence relate is of course an enormous
question, which has preoccupied philosophy for hundreds (if not thousands)
of years. On the surface, the two kinds of phenomena are radically distinct.
Materiality or mechanism is causal, local, energetic (i.e., physical state change
requires energy), and ultimately, because of the nature of underlying physics,
both incremental and ahistorical. Ultimately, our understanding of mecha-
nism must be grounded in something like physical field theory. Phenomena
of meaning, interpretation, reference, etc., are stunningly different. Refer-
ence, for example, to take just one aspect: leaps across gaps in time, space,
and possibility, violating all sorts of physical locality proscriptions; is not en-
ergetic at all, except locally (in the sense that no meter, attached to an object,
can detect when that object is referred to); is not obviously incremental; traf-
fics in ordinary material ontology, rather than fields (because representation
is representation as); is normatively governed (involving not only considera-
tions of truth and rationality, but perhaps other norms as well, from lower-
level notions of “working vs. broken” to high-level norms of commitment
and ethics), and so on and so forth. Indeed, experience with computation
should not blind us to the fact that for many centuries, the two phenomena
seemed so spectacularly unlike as to defy integration.

Computation, as already suggested, is widely alleged to deal with the
meaning / mechanism dialectic in a fashion that is restricted in two critical
ways. First, the kind of intentionality that computational systems are thought
to manifest is often thought to be restricted: to representation or informa-
tion, for example, as opposed (except in science fiction) to consciousness and
full-blooded ethical commitment. Second, these special forms are taken to be
further restricted, due to computing’s alleged formality. Computation’s for-
mality, in fact—for example as inscribed in the first (formal symbol manipu-
lation) construal—is taken as key to its ability to resolve what might other-
wise be incommensurable. For example, Fodor explicitly characterises (his
conception of) the computational theory of mind as a major advance (over an
obviously true but rather vapid more general representational theory of mind)
exactly because computing is subject to a formality condition.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 15 –

What does ‘formal’ mean? To answer that in general is deucedly difficult;
‘formal’ is a stubbornly recalcitrant predicate. Much of my 30-year study has
focused on it: what ‘formal’ means, what it is to say that computers are for-
mal, whether computer science is or should be a formal discipline, what the
nature and applicability is of so-called “formal” methods, etc. But if we re-
strict ourselves to the first construal, mentioned above—that computers use
symbols or process information—we can get some sense of what is at stake.

In particular, the notion of ‘formality’ (in the fsm context) can be broken
down into two readings: one positive, one negative. On the positive reading,
computing’s active (mechanical) symbol processing is mandated to depend
only those symbols’ form, or shape, or grammar—or other effectively potent
property. On the negative reading, this same symbol manipulation is mili-
tated to proceed independent of those symbol’s semantics. This is all supposed to
work in the way in which we are taught in logic: one posits a language or set
of symbols or expressions with a determinate grammar, over which opera-
tions (proof theory or inference) can be defined, without reference to issues
of reference, meaning, interpretation.

The problem, in analysing this claim in depth, is to figure out what this
double characterisation of formality comes to, without either (i) narrowing it
to the extent that it is rendered demonstrably false of real-world computers,
or (ii) broadening it to the point of vacuity. The threat of vacuity is height-
ened by the characterisation’s formulation in terms of “works” or “manipu-
lates.” First, as was suggested above, for the negative claim to have bite, there
must be semantics around, for the processing to proceed independently of.
Without it, as we saw above, the formal symbol manipulation construal
would amount to no more than stuff manipulation. Second, for the positive
reading of formality to have substance, the “form” or “shape” or “grammar”
must amount to more than the causal or effective or mechanistic properties of
the symbols, or else the (positive) claim would amount to no more than a
claim that the system works causally (effectively, mechanically) in virtue of its
ingredients’ causal (effective, mechanical) properties—which is mere tautol-
ogy.13

The fundamental problem, as I document in my analysis of the fsm con-

                                                
13So construed, the claim is even weaker than physicalism, since it doesn’t claim that the
system is constituted physically, but only that its physical dimension is physical.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 16 –

strual,14 is that I have not been able to find any definition of formal that
meets these two criteria: i.e., that restricts what “formal symbol manipulation”
means to something stronger than an obvious consequence of physicalism,
but that remains true of real-world computational systems. Problems arise on
both sides of the equation: with finding a (true) positive reading that is
stronger than “causal and effective,” and a negative reading that is true of
computation in the wild. As regards the former, it seems easy to find counter-
examples to all reasonable suggestions restricting “form” to anything less than
“any possible causally efficacious property.” On the latter front, the problem
is that the only sorts of systems for which a negative reading of formality
seems ultimately defensible are systems that are disconnected from their sub-
ject matter, in the way that is always imagined for theorem provers, logical
axiomatisations, etc. Real-world computers, however, are typically engaged in
their subject matters: they participate, causally and effectively, in the very
domains that their symbols represent. It is that real-world involvement, ulti-
mately, that defeats the negative reading.

So formality fails, positive and negative. That fits with the overarching
claim made earlier: that computation is not a special kind of symbol manipu-
lation; it is symbol manipulation tout court. But—and this is where the rec-
ognition of computing as a “site” has impact—that failure of formality
doesn’t mean that we have nothing to learn from our computational experi-
ence about the relationship between meaning and mechanism. On the con-
trary: we can view the failure of formality (and the general deconstruction of
computing it exemplifies) as a boon: by discarding it, we rid ourselves of a
theoretical obstacle that has blocked us from understanding the power and
generality of that very experience.

To see how this goes, we need to reconstruct the work that was being
done, in the computational setting, by the alleged commitment to formality.
To describe that here requires compressing a book into two paragraphs,15 but
I hope I can at least convey a flavour of the argument.

The positive reading of formality (that systems operate in terms of syntax,
form, shape) I reconstruct as a commitment to the causal efficacy of how sys-
tems work—i.e., as an endorsement of a critical aspect of physicalism. Except

                                                
14The Age of Significance: Volume II • Formal Symbol Manipulation
15«Ref aos·ii.»



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 17 –

that it is not level-neutral; it is not merely the claim that the system can be
understood as a coherent mechanism at some (perhaps a very low) level, but
that it can be so understood—i.e., that it can be coherently analysed qua a
causal mechanism—at the same level as that at which it is semantically inter-
preted. So construed, the claim can be broken into two parts. The first part,
which merely affirms the importance of materiality and effective mechanism,
has historically been substantial because formal systems  have traditionally
been analysed in theoretical contexts that take them to be abstract. That is:
formality (in its positive reading) can be seen as the shadow of materiality in a
context that has tried to eschew embodiment (more on this under the second
dialectic). The second part of the claim, that the system can be coherently
understood as mechanical at the same level at which it is semantically evalu-
able, is more contentious. Recent research on emergence and on semantic
externalism (somewhat unlikely bedfellows) challenges this claim, though
that challenge is in turn partly countered by the extraordinary flexibility that
computer science has achieved in implementing all kinds of abstract ma-
chines on top of each other. My own view is that it is too early to make a call
on how this issue will resolve. Note, that, that by ridding ourselves of the dis-
traction of formality, we can see this “causal efficacy and semantic interpreta-
tion at the same level” as something of a denial of Davidson’s anomalous
monism.

The negative reading of formality claims that computational systems op-
erate independent of semantics. There are a host of different things that can
mean, but in the end, because of the (afore-mentioned involvement in their
subject matters), all plausible readings prove too strong; they are false of
computation in the wild—primarily because of such systems’ participatory
engagement in their subject matters. But once again, that does not mean
there are no general lessons to be learned. On the contrary, one positive les-
son has to do with the general inefficacy of the semantic: a recognition that
semantical properties (such as reference and truth, paradigmatically, but even
meaning, at least in a “wide” sense) are not effective. Systems cannot always,
and perhaps not ever, do what they do in virtue of the semantical properties
manifested by their internal parts.

This may seem like restatement of the initial claim: if the system does not
work in virtue of the semantical properties, does that not imply that it does
work independently of them? The answer depends on the strength of notion



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 18 –

of independence. Some will argue that “does not work in virtue of” entails
“works independently of”, at least on a logical reading of independence. But I
believe that is misleading. There is a world of difference between “not de-
pendent” and “independent”—a vast intermediate terrain of partial depend-
ence, or, to adopt a more useful characterisation, partial interdependence.
What the thick engagement16 of real-world systems with their semantic do-
mains shows us, I believe, is how the two prongs of the dilemma—the limita-
tions and constraints of effective material operation, which constrain the sys-
tem to  operate, mechanically, in terms of its internal machinery and the
physical state of the impinging environment, on the one hand, and the local-
ity-transcending reach of semantics and reference, on the other—lead a fully
engaged system to substantial and authentic intentional engagement with
that domain. And to repeat: these are lessons that an unwarranted commit-
ment to formality and computing would have blinded us to.17

There are a thousand other things to say; this is the tip of a very large ice-
berg. But we are running out of time—and I have touched on only the first
of the four dialectics. What I hope is that over this workshop we will have
time to explore in more details some of these remarkable consequences of the
concrete technical practice that lies in front of us, waiting to be disclosed.

5. Abstract and concrete

Given 300 years of scientific success in explaining the properties of physical
phenomena, one might expect that the “mechanism” side of the primary dia-
lectic would be in good shape, and that all the theoretical difficulties would
have to do with meaning. But it is not so. Explaining the mechanism side of
the primary dialectic has proved surprisingly recalcitrant. In fact virtually all
of 20th century computer science has been devoted to this topic—at the ex-
pense of the semantical. Where meaning has been studied, when it has been
studied at all, is in logic, cognitive science, and the philosophy of mind. (It
may seem odd to say that computer science has not studied semantics, given
the prominence of what is called “programming language semantics”—but
that is a terminological distraction, I believe. See the sidebar on “Program vs.

                                                
16Compare: Haugeland’s intimate engagement «ref».
17Fortunately, industry is not shackled by theoretical ideals. Commercial software, I believe,
gives us example after example of thick in-the-world intentional participation.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 19 –

Process Semantics”.)
The basic question is how we are to understand mechanism: what the

powers and limitations of mechanisms are; what can be done, with what re-
sources, in what amounts of time; and what cannot be done at all. On the
face of it, one might expect that the answer to such questions would depend
on the particular materials out of which one makes things. Famously, how-
ever, in what is taken to be one of the century’s great theoretical advances,
early work in recursion and computability theory lifted the notion of mecha-
nism away from concrete physical considerations and (allegedly) formulated
it abstractly (for example, in the notion of a Turing machine). The basic mo-
tivation for this abstracting stance is straightforward: the “very same compu-
tation,” it is argued, can be implemented on arbitrary different machines,
made of silicon, vacuum tubes, dna—even Rube Goldberg arrangements of
Tinker Toy.18 What matters about the computation thus implemented, it is
argued, must therefore be at a more abstract level, above such mundane ma-
terial considerations.19

Recently, however, there have been suggestions from many different
quarters of computing suggesting that this abstract perspective may have gone
too far. Circuit designers have come to realise that issues of three-dimensional
geometry may ultimately have more to do with the limits on what can and
what cannot be done than pure abstract topology. At the deepest levels, com-
puter scientists are collaborating with quantum physicists to define a purely
physical notion of information, in an effort to fuse the foundations of the

                                                
18In cognitive science and philosophy of mind this is known as the multiple realisability ar-
gument.
19Of various reasons why logic and theoretical computer science treat computability results
abstractly, the most famous have to do with multiple realisability. But there are other rea-
sons, some of which are surely at least as important. One big one is that logic and comput-
ability theory developed, historically, out of concerns with metamathematics, making an
abstract perspective more natural. Curiously enough, this remains true even when the focus
is on language, not just on the (mathematical) entities that the language is about. The prob-
lem is that the languages used to represent mathematical subject matters are by and large
context-independent, which turns out to entail that one can frame results about such lan-
guages purely in terms of types, without regard to concrete specific facts about individual
tokens (the way one needs to do when treating indexical expressions, for example). It has
thus proved convenient, I believe, to deal with states, marks, etc., as abstract individuals,
whereas in my own view they are more properly understood as concrete types (i.e., types of
concrete things).



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 20 –

two fields.20 And in AI and cognitive science, the abstract and rationalist
models of computing inscribed in the classical gofai model of cognition are
being roundly rejected, in favour of embodied, dynamical alternatives, that
take the concrete physical existence of the cognitive agent much more seri-
ously. In sum, we are in the midst of something of a re-materialisation of
computing, aiming to undo the abstracting excesses of the logical tradition
from which theoretical computer science inherited most of its intellectual
tools.

Commensurate with this general shift, the primary result of my analysis
of the second effective computability (ec) construal of computing is a claim
that the fundamental computability limits—the constitutive constraints on
which theoretical computer science rests—in spite of tradition, derive from
the physical. That is: I claim that both absolute computability limits, as in
Gödel’s incompleteness results, the unsolvability of the halting problem, etc.,
and relative computability limits, as in complexity theory, the difficulty of
deciding classes of formulae, etc., derive directly from concrete, material con-
straints on underlying mechanisms. It is not just that the results are framed
mathematically; so are (at least many) results in physics and chemistry.
Rather, the claim is that, as in physics and chemistry, the mathematical struc-
tures in terms of which we frame them are not the real subject matter, but
models of the subject matter—which is to say, models of physical phenom-
ena. Present theoretic practice notwithstanding, the subject matter of theo-
retical computer science is by my lights entirely concrete.

Needless to say, this is a contentious claim. Informally, in my experience,
it divides people by discipline: I have yet to meet a logician who believes it, or
working programmer who disbelieves it. What makes the issues subtle (and
interesting) is the fact that computability results are (i) not specific to any
particular material substrate (factoring primes is approximately equally diffi-
cult whether one uses vacuum tubes, silicon transistors, or tinker toys), and
(ii) not expressed in physical units (kilograms, ergs, etc.), suggesting that they
must actually be about numeric quantities. But that suggestion is illusory. It
turns out that if one changes the physics of the realizing substrate, one can
change complexity results at will. Intimations of this were recognised as early

                                                
20 «Refer to the identification of the loss of a bit of information with a measurable quantity
of heat.»



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 21 –

as in the 1930s by Gandy, who showed that the absolute computability results
depended in immediate and subtle ways on the character of the physical
mechanisms on which they were assumed to be implemented.

Some of the arguments I advance in support of this concrete reading of
computability are negative: that not recognising and understanding the physi-
cal nature of effectiveness yields several unhappy results: one can solve the
halting problem, cannot explain the critical (but never explained) notion of a
“reasonable encoding,” etc. The lion’s share of the argument, however, rests
on positive results: that if one does recognise the concrete nature of effective-
ness, one can (among other things):

1. Explain the notion of a reasonable encoding—including (i) what
the constraints on reasonable encodings are, (ii) why encodings play
such a critical role in computability theory, and even (iii) why the
notion of a reasonable encoding has received so little theoretical at-
tention;

2. Make sense of the rise of Girard’s linear logic, and computer sci-
ence’s interest in intuitionistic type theory and constructive
mathematics;

3. Predict the proposed fusion of foundational theories of quantum
mechanics and computer science-based theories of information;

4. Make sense of why physicists (not just computer scientists) are in-
terested in super-Turing computability, continuous models of
computation, quantum computing, etc.; and

5. Resolve otherwise unexplicated tensions between what is real and
what is virtual (e.g., in popular conceptions of computational tech-
nology).

I would be the first to admit, though, that reformulating our understanding
of (what is known as) computability in concrete, material terms, in the way I
recommend, is an enormous intellectual task. My guess is that it will take at
least 50 years for the transformation to take  place. For example, all familiar
computability results—that one cannot in general decide whether a Turing
machine will halt on an arbitrary input, that factoring primes is hard,
etc.—will require complete conceptual reformulation, as issues about mecha-
nisms, not issues about numbers or decisions. The (so-called) theory of effective



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 22 –

computability that I have indicted, several times, as a theory of computing,
will have to be reconstructed as a theory of effectiveness (and not a theory of
computing at all—as suggested at the end of Part I), because it deals with only
the first (mechanism) arm of the primary dialectic, not with the second
(meaning, semantics, reference, truth, etc.). What it is, I argue—something
that history will eventually recognise it as—is neither more nor less than a
mathematical theory of causality: that is, a theory of what can be done, in
what time and with what resources, by what sorts of arrangements of con-
crete, physical stuff. That such a theory should be framed at some level of ab-
stractness, away from very specific concerns having to do with particular ma-
terials, is entirely to be expected. It is for this reason that I have dubbed the
properties that the theory traffics in effective properties, rather than physical
properties; they are properties that systems (or states) can do consequential
work in virtue of possessing.21

One final remark. A proponent of embodied cognition might argue that
even if we do reconstruct computability theory as a theory of causality, it will
still be too abstract: that in order to understand in-the-wild cognition, one
needs to understand not only relatively abstract causal properties of the sys-
tem, but quite concrete properties (such as heft and materials)—e.g., in order
to understand rhythm and dynamic movement. That may be, but as already
indicated, there is every indication in theoretical computer science that the-
ory is rapidly being refined so as to deal with more and more direct physical
parameters (in order, among other reasons, to treat issues of three-
dimensional packaging and real-time computing). Moreover, somewhat
counter to this point, the embodied cognition movement has to be interested
in bodies and materials at some level of abstraction. Suppose one were to re-
place the control circuit for the muscles of an animal with an electronic
souped-up version; what matters, presumably, even to the most materially-
oriented theorist, is that the signals match, that power be supplied, that the
right function be computed in real-time, etc. There are questions of whether
such implants could work—and how much of our cognitive facilities could
be upgraded in this way. But virtually no one thinks that a brain implant
                                                
21It is also unclear exactly what it is to be a physical property. Being a million light-years
from Alpha Centauri is presumably a physical property, but not an effective one; it would be
impossible, at least in any remotely practical sense, to build a device that could “detect” the
exemplification of this property.



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 23 –

would literally have to be made of DNA-based neurons, in order to function
in a “materially” appropriate way.

Put it this way: neurophysiology and the theory of effective computability
are climbing up the same mountain, even if from different sides.

6. Static and Dynamic

7. The Many and the One

8. Relations

These last three sections, which were not completed in time for the proceedings,
will be addressed in the conference presentation and included in the final paper.
Sections 6 and 7 deal with the third and fourth dialectic, respectively. Section 8
will address a variety of ways in which the four dialectics are intertwined (no
claim is being made that they are independent).

8. Conclusion

I do not claim that these four dialectics constitute computing—or that they
constitute the realm of meaning and mechanism, subject matter of the age of
significance. That is, I am not claiming that an adequate account of meaning-
ful (intentional) concrete systems would be a four-dimensional theory framed
along these four axes. Rather, the point is more modest: that these four issues
permeate computing; that any satisfactory theory must address them; that
they provide us with a useful framework in terms of which to understand
how different theories compare.

Needless to say, other issues would have to be addressed as well, in order
to do justice to the full range of real-world computational phenomena, in-
cluding for example the relation between a system described at some level of
abstraction (i.e., a system under a description) and that same system de-
scribed at some other level of abstraction—an issue that implicates such criti-
cal notions as reduction, supervenience, abstraction, emergence, and imple-
mentation. But those are issues for another day.

The fact that there are always more issues to address is perhaps the most
durable part of studying real-world computing. If one operates under the
misconception that computing is a subject matter, that seemingly endless



F o u r  D i a l e c t i c s  o f  C o m p u t i n g 

– 24 –

proliferation of concerns can be discouraging; one despairs of ever being able
to “rein the subject matter in.” One of the great benefits of recognising that
computing is an unbounded site, where we are experimenting with building
arbitrarily complex intentional systems, is that one expects that new issues will
forever emerge. Far from being discouraging, this experience—once one ap-
proaches the phenomenon from the right perspective—can be seen as testa-
ment to computing’s unending fertility.

——— end of file —————ðð


